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Abstract
Background: The preservation of the alveolar ridge after tooth extraction is essential 
for maintaining bone volume, which is vital for subsequent implant placement. 
Ferulic acid (FA), a polyphenol distinguished by its antioxidant and osteogenic 
properties, has the potential to augment bone regeneration. Nevertheless, its 
specific role in alveolar bone healing warrants further investigation.
Purpose: This study assesses the effects of locally administered FA in conjunction 
with demineralized freeze-dried bone allograft (DFDBA) on osteoblast proliferation 
(Ki-67 expression) and trabecular bone thickness within a rabbit model.
Materials and Methods: This in vivo experimental animal study was conducted 
using twenty male New Zealand white rabbits (1.5–2 kg), which were allocated 
into four groups (n=5): Group A received 2% FA + 98% DFDBA, Group B 
received 4% FA + 96% DFDBA, Group C was treated with DFDBA alone (positive 
control), and Group D underwent natural healing (negative control). The alveolar 
sockets were treated accordingly and sutured following extraction of the upper 
central incisor. Histological analysis involved hematoxylin and eosin (H&E) 
staining and immunohistochemical assessment of Ki67 expression to evaluate 
osteoblast proliferation. Trabecular bone thickness was measured through 
digital histomorphometry. Statistical analyses were performed using appropriate 
parametric or non-parametric tests.
Results: Groups receiving FA (2% and 4%) demonstrated significantly higher 
Ki67 expression and trabecular bone thickness compared to the DFDBA-only 
and natural healing groups (p < 0.05). The 4% FA group exhibited the most 
pronounced osteogenic response.
Conclusion: Local application of FA, particularly at 4%, enhances osteoblast 
proliferation and trabecular bone thickness in alveolar ridge preservation. 
This suggests its potential as an adjunct in post-extraction bone regeneration 
strategies.

Key words: Ferulic acid, Alveolar Ridge Augmentation, Allografts, Ki-67 Antigen, 
Bone Regeneration.

Introduction
Ferulic acid (4-hydroxy-3-methoxy cinnamic acid) was initially isolated from Ferula 
foetida (1). It is a derivative of caffeic acid commonly found in plants, fruits, and various 
beverages, including coffee and beer (2, 3). The biological effects of ferulic acid began 
to be recognized in the 1970s, when researchers in Japan first identified its antioxidant 
properties in rice oil (4). Furthermore, ferulic acid may inhibit platelet aggregation 
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Dentistry, University of Mosul, Iraq (Approval No. 
UoM 24/1028 dated 02/09/2024). All procedures 
adhered to the ARRIVE guidelines for animal research, 
ensuring humane treatment, minimization of pain, and 
compliance with institutional animal welfare protocols. 
The materials used included ferulic acid (FA), obtained 
from Taslan Chemicals® (USA) with a purity of 99% 
(C₁₀H₁₀O₄), and demineralized freeze-dried bone 
allograft (DFDBA), supplied by CenoBone™ Freeze-
Dried Bioimplants (UK).

Procedure
This in vivo experimental animal study used twenty 
male New Zealand white rabbits (1.5–2 kg). They were 
housed under standard conditions with free access to 
water and a controlled diet and classified as follows:
The rabbits were randomly divided into four groups 
(n = 5 per group). Group A received 2% ferulic acid 
graft mixed with demineralized freeze-dried bone 
allograft (DFDBA). Group B received 4% ferulic acid 
mixed with DFDBA. Group C was treated with DFDBA 
alone, and Group D served as the natural healing 
(negative control) group. Following anesthesia and 
analgesia administration with Ketamine: 10–50 mg/
kg intramuscularly (Turkey), Xylazine: 3–5 mg/kg 
intramuscularly (Ireland), and Lidocaine 2%: local 
infiltration (UAE). Once sedation was achieved in the 
rabbits, the extraction of the upper central incisor was 
performed with caution to prevent any fracture of the 
bony plates. The alveolar sockets were debrided to 
remove residual soft tissue, including the periodontal 
ligament and lamina dura, using a bone curette and 
spoon excavator, and subsequently filled according 
to the respective treatment assigned to each group. 
The sockets were then sutured using 4/0 silk sutures, 
and the animals were monitored post-operatively (see 
Figure 1). 
Following a period of 21 days, the animals were 
humanely euthanized, and bone specimens were 
subsequently collected and fixed in 10% buffered 
formalin. The samples underwent decalcification in 
10% formic acid and were embedded in paraffin. 
Histological sections of 5 µm thickness were prepared 
and stained with hematoxylin and eosin for the purpose 
of measuring trabecular bone thickness. Additionally, 
immunohistochemical staining was performed to 
assess Ki67 

Trabecular Bone Thickness Measurement:

Quadrant Partitioning
Each histological slide is divided into four quadrants 
and further subdivided into four sub-quadrants (Al Hijazi 
& Salim, 2010) (37). To ensure unbiased measurement 
of trabecular thickness (µm), measurements were 
taken in three randomly selected fields within each 
sub-quadrant, utilizing ProView™ digital morphometry 
software (Optica Microscopes, Italy). The mean 
trabecular thickness per slide was then calculated 
from a total of 48 measurements (4 quadrants × 4 sub-
quadrants × 3 fields).

and the synthesis of thromboxane-like molecules, 
thereby potentially reducing the risk of thrombosis (5). 
Additionally, ferulic acid has been shown to negatively 
regulate osteoclast activity (6). 
Additionally, phenolic acids stimulate bone formation 
via specific signaling pathways (7). As a demineralized 
freeze-dried bone allograft (DFDBA), demyelinated 
bone matrix (DBM) constitutes an allograft. DFDBA 
offers an osteoconductive surface and is a significant 
source of osteoinductive elements (8). Consequently, 
it promotes mesenchymal cell migration, adhesion, 
and osteogenesis following implantation in well-
vascularized bone (9). It further facilitates endochondral 
bone regeneration in regions that otherwise fail to 
produce bone. DFDBA was treated with an acidic 
solution to remove mineral ingredients while retaining 
most proteinaceous components of bone, together 
with low amounts of calcium-based solids, inorganic 
phosphates, and trace cellular debris (10). DFDBA 
possesses a propensity for accelerated degradation, 
thereby facilitating the creation of new bone (11). 
Consequently, commercially manufactured allograft-
retained proteins can influence cellular activity in vivo 
(12, 13). The primary advantage of allografts lies in 
their mechanical qualities, which are comparable 
to those of autogenous bone, and their potential to 
include the collagenous matrix and proteins present in 
normal bone, despite lacking vital cells. Their handling 
qualities are similar to those of autologous bone (14). 
Bones are a particular type of connective tissue in the 
human body, characterized by calcium reinforcement 
and the presence of specialized bone cells. Bone tissue 
undergoes continuous remodeling, including formation 
and resorption, which is essential for maintaining the 
integrity and architecture of the skeleton (15). Optimal 
bone health depends on a balanced diet rich in 
nutrients, regular weight-bearing activity, and sufficient 
hormonal equilibrium (16-19). Bone remodeling is an 
unpredictable process wherein osteoclasts remove 
old or damaged bone, which is subsequently replaced 
by new bone tissue produced by osteoblasts (20). 
The Ki-67 protein functions as a crucial proliferation 
marker in disease. Ki-67 was first recognized as an 
antigen for a monoclonal antibody found in the nucleus 
of growing cells (21). Although antibodies targeting 
Ki-67 are essential tools in cancer detection, the 
role of this protein remained unclear for an extended 
period. The sole relevant characteristic of Ki-67 was 
its absence in quiescent cells and its presence during 
cellular proliferation (21). The protein is expressed in 
isoforms of 320 and 359 kDa, derived from differentially 
spliced mRNA variants encoded by the human MKI67 
gene (22). Both isoforms of Ki-67 function similarly 
as surfactants, maintaining the separation of mitotic 
chromosomes following nuclear envelope breakdown. 
Ki-67 forms the perichromosomal protein compartment 
by binding to protein phosphatase 1 (23).

Materials and Methods
This study received approval from the  Ethical and 
Scientific Research Committee of the Department 
of Oral and Maxillofacial Surgery at the College of 
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Statistical Analysis
Statistical analyses were conducted utilizing IBM 
SPSS Statistics 28  for the evaluation of histological 
data, including trabecular bone thickness and Ki-

Ki-67 Immunohistochemistry:
Scoring: The scoring criteria for Immunohistochemistry 
(IHC) for Ki-67 in this study were adopted in accordance 
with Li YX et al. (2015) (24), as delineated in Table 1.

Figure 1. Augmentation and Suturing Procedures. 1: Packing the Augmented Mixture: Demonstrates the placement of the aug-
mentation material into the dental socket until it is fully packed. 2: Final Lock Before Suturing: Shows the stabilized augmented 
mixture within the socket, prepared for suturing. 3: Simple Continuous Suturing Technique: Illustrates the application of a simple 
continuous suture using silk thread to ensure a watertight seal within the treated socket.

(3)

Table 1. Scoring criteria of Immunohistochemistry (IHC) for Ki-67 in this study 

Staining positive cells Staining intensity Final score product
Percent (%) Score 1 Intensity Score 2 Score 1 × Score 2 Score 3
<5% 0 Absent 0 0–1 0 (-)
6–25% 1 Weak 1 2–4 1+ (+)
26–50% 2 Moderate 2 5–8 2+ (++)
51–75% 3 Strong 3 9–12 3+ (+++)
76–100% 4

Scoring Methodology: Final score (Score 3) = (Percentage of positive cells Score 1) × (Staining intensity Score 2). Example 
1: <5% cells (Score 1 = 0) + Weak intensity (Score 2 = 1) → 0 × 1 = 0 (Score 3 = 0 (-)). Example 2: 80% cells (Score 1 = 4) + 
Strong intensity (Score 2 = 3) → 4 × 3 = 12 (Score 3 = 3+ (+++)) (24).
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A dose-dependent response was observed: Group 
B demonstrated superior performance compared to 
Group A in trabecular thickness (p = 0.008) and Ki67 
expression (p = 0.003). Relative to Group C, Group B 
exhibited a 2.8-fold increase in bone thickness and 
a 1.7-fold enhancement in Ki67 scores, thereby 
underscoring the synergistic effect of FA in conjunction 
with DFDBA. Statistical validation confirmed substantial 
effect sizes (trabecular thickness: Cohen’s  d  = 2.1; 
Ki67:  r  = 0.72) and high reproducibility (ICC = 0.92). 
Furthermore, Figure 6 presents the Comparative 
Histograms for both markers.

Discussion
Previous research has confirmed the essential 
role of cellular proliferation markers and bone 
microarchitecture in evaluating bone regeneration. In 
this study, Ki67 expression was employed to assess 
osteogenic cell proliferation, while trabecular bone 
thickness was used as a measure of the quality of new 
bone tissue. The results demonstrate that bioactive 
interventions—specifically, the supplementation of 
ferulic acid (FA) alongside demineralized freeze-dried 
bone allograft (DFDBA)—lead to a dose-dependent 
enhancement of both parameters.
In the negative control group (Group D), the 
trabecular bone thickness was significantly reduced 
(101.4±18.5µm), with negligible Ki67 expression 
(0.4±0.54). The findings align with the clinical 
observations of Marian et al. (2024) (25) and the 
spontaneous healing pattern seen by Martins et al. 

67. The normality of data distribution was examined 
through the Shapiro-Wilk test, while the homogeneity 
of variances was assessed using Levene’s test.
A non-parametric  Kruskal-Wallis H test  was 
conducted for inter-group comparisons, subsequently 
followed by  Mann-Whitney U tests  with  Bonferroni 
correction  for pairwise analyses. Statistical 
significance was established at  p ≤ 0.05 (significant) 
and p ≤ 0.01 (highly significant).

Results
All rabbits tolerated the surgical procedures well; no 
intraoperative or postoperative complications were 
observed.
Quantitative analysis demonstrated significant 
differences among the groups in both markers: 
trabecular bone thickness (see Table 2) and Ki67 
expression (see Table 3). 
The results were expressed as (Mean ± SD), where:
a. 	 Group B (4% FA + DFDBA) exhibited the highest 

trabecular bone thickness (719.2 ± 509.5 μm) and 
Ki67 expression (2.8 ± 0.44), see (Figure 2). 

b. 	 Group A (2% FA + DFDBA) with  234.4 ± 91.2 
μm bone thickness and 2.1 ± 0.54 Ki67 score, see 
(Figure 3). 

c. 	 Group C (DFDBA alone) showed moderate values 
(258.1 ± 56.7 μm bone thickness, 1.6 ± 0.54 Ki67), 
see (Figure 4). 

d. 	 Group D (natural healing) demonstrated the lowest 
outcomes (101.4 ± 18.5 μm bone thickness, 0.4 ± 
0.54 Ki67), see (Figure 5).

Table 2. Trabecular Bone Thickness Across Experimental Groups

Group Mean ± SD (µm) Median (IQR) Significance*

Group D (Control) 101.4 ± 18.5 93.0 (80–120) a

Group C (DFDBA) 258.1 ± 56.7 258 (170–339) b

Group A (2% FA) 234.4 ± 91.2 246 (145–285) b

Group B (4% FA) 719.2 ± 509.5 598 (327–1224) c

*Different superscript letters denote significant differences (Mann-Whitney U test with Bonferroni correction, p < 0.01).

Table 3: Ki67 Expression Scores Across Experimental Groups

Group Mean ± SD Median (IQR) Significance*

Group D (Control) 0.4 ± 0.54 0.4 (0.2–0.6) a

Group C (DFDBA) 1.6 ± 0.54 1.6 (1.2–2.0) b

Group A (2% FA) 2.1 ± 0.54 2.1 (1.8–2.4) c

Group B (4% FA) 2.8 ± 0.44 2.8 (2.6–3.0) d

*Different superscript letters denote significant differences (Mann-Whitney U test with Bonferroni correction, p < 0.01).
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that recruits osteoprogenitor cells but lacks potent 
mitogenic stimuli. This finding is consistent with Parashis 
et al. (2004) (27), who reported that DFDBA achieves 
only partial defect fill in human intrabony lesions without 
the presence of growth factors. Additionally, in Group C 
(100% DFDBA), trabecular bone thickness increased 
to an intermediate level (258.1±56.7µm), indicating that 
while DFDBA provides an osteoconductive scaffold, 

(2022) (26), indicating that natural healing results in 
insufficient osteoblast recruitment and considerable 
alveolar ridge erosion. The diminished Ki67 expression 
in this cohort highlights the restricted inherent 
regeneration potential of untreated extraction sockets.
In Group C (Positive Control: 100% DFDBA), a modest 
increase in Ki67 expression (1.6±0.54) was observed, 
reflecting the passive osteoconductive effect of DFDBA 

(1)

(2)

Figure 2. Histological and Immunohistochemical Analysis of Group B, 1: Trabecular Bone Formation: Digital histo-
micrograph at 10x magnification displaying new trabecular bone formation in Group B. Measurements in micrometers (μm) 
were performed using the Pro-View application from Optica®, 2: Ki67 Expression: Immunohistochemical staining for Ki67 in 
Group B at 10x magnification, highlighting Ki67 expression in newly formed osteoblasts.​
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FA + 98% DFDBA), trabecular thickness reached 
234.4±91.2µm—a moderate enhancement which 
may be attributable to the protective effects of FA 
on collagen and its role in suppressing osteoclast-
mediated bone resorption, as described by Doss et al. 
(29). Group B (4% FA + 96% DFDBA) demonstrated 
a substantial increase in trabecular bone thickness 
(719.2±509.5µm). This pronounced enhancement 

its efficacy remains limited without supplementary 
bioactive stimulation. These observations align with the 
findings of Keshavarzi et al. (2023) (28). Paradoxically, 
the trabecular thickness in Group C exceeded that 
of Group A (234.4±91.2µm), likely owing to residual 
DFDBA particles resembling native bone structure, 
whereas FA facilitated accelerated remodeling of the 
scaffold into biologically active tissue. In Group A (2% 

(1)

(2)

Figure 3. Histological and Immunohistochemical Analysis of Group A. 1: Trabecular Bone Formation: A digital histo-
micrograph at 10x magnification illustrating new trabecular bone formation in Group A. Measurements in micrometers (μm) 
were conducted using the Pro-View application from Optica®. 2: Ki67 Expression: Immunohistochemical staining for Ki67 in 
Group A at 10x magnification, emphasizing Ki67 expression in newly formed osteoblasts.
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and enhance bone mineral density. Furthermore, 
FA possesses the capacity to protect collagen from 
degradation (32) and to promote the organization 
of a collagen-rich extracellular matrix (33), likely 
contributing to the superior bone quality observed in 

corroborates the dose-dependent impact of FA and is 
supported by the studies of Wagle et al. (2021) (30) 
and Sassa et al. (2003) (31), which reported that higher 
concentrations of FA notably stimulate the proliferation 
of bone marrow-derived mesenchymal stem cells 

(1)

(2)

Figure 4. Histological and Immunohistochemical Analysis of Group C, 1: Trabecular Bone Formation: Digital histo-
micrograph at 10x magnification displaying new trabecular bone formation in Group C. Measurements in micrometers (μm) 
were performed using the Pro-View application from Optica®. 2: Ki67 Expression: Immunohistochemical staining for Ki67 in 
Group C at 10x magnification, highlighting Ki67 expression in newly formed osteoblasts.
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observation aligns with the findings of Liu et al. (2018) 
(34), who reported that elevated Ki67 levels are closely 
associated with increased osteoblast proliferation and 
expedited bone formation. This outcome underscores 
the osteoinductive potential of ferulic acid. In Group 

this group. The addition of ferulic acid to the grafting 
material markedly increased cellular proliferation. In 
Group A (2% FA + 98% DFDBA), Ki67 expression rose 
to 2.1±0.54, suggesting that even a low concentration 
of FA can augment osteoblast proliferation. This 

(1)

(2)

Figure 5. Histological and immunohistochemical analysis of Group D. 1: Trabecular bone formation: Digital histomicrograph 
at 10x magnification illustrating thin strips of trabecular bone in the group. Measurements in micrometers (μm) were 
conducted using the Pro-View application from Optica®. 2: Ki67 expression: Immunohistochemical staining for Ki67 in 
Group D at 10x magnification, demonstrating the lowest Ki67 expression among the groups in newly formed osteoblasts.



290 282-293

The effect of locally applied ferulic acid on osteoblast proliferation and trabecular bone thickness in a rabbit model

and trabecular bone thickness across the experimental 
groups underscores the potential of ferulic acid to 
accelerate and enhance bone regeneration. The 
comparatively low values in the control group (Group 
D) illustrate the limitations of natural healing. In 
contrast, the significant improvements seen with higher 
concentrations of FA (particularly in Group B) highlight 
its promise as a bioactive adjunct in regenerative bone 
therapies. Future studies should aim to elucidate the 
molecular mechanisms through which FA modulates 
cell proliferation and matrix deposition, ultimately 
optimizing its clinical application in alveolar socket 
preservation and other bone repair settings.

B, the dose-dependent upregulation of Ki67 (2.8 ± 
0.44) correlates with FA’s ability to activate the  ERK 
signaling pathway, as demonstrated in the study of 
Zhou et al. (2021) (35), thereby promoting osteoblast 
proliferation. Concurrently, FA’s antioxidant properties 
mitigate oxidative stress, which is known to impair 
osteoblast function, as evidenced by Ghaisas et al. 
(2014), who reported that FA reduces oxidative stress 
and significantly promotes wound healing in diabetic 
rats. This mechanism may further support osteoblast 
survival by alleviating oxidative stress within bone 
microenvironments (36).
Collectively, the concurrent increase in Ki67 expression 
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Figure 6. Comparative Histograms. 1. Trabecular Bone Thickness Across Groups: A histogram comparing trabecular bone 
thickness measurements among Groups A, B, C, and D. 2. Ki67 Expression Across Groups: A histogram illustrating the 
comparative Ki67 expression levels among Groups A, B, C, and D.
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preservation through the stimulation of osteoblast 
proliferation, as evidenced by increased Ki67 
expression, and by improving trabecular bone thickness. 
The dose-dependent improvements underscore 
FA’s potential as a bioactive supplement in bone 
regeneration techniques. This research offers novel 
insights into FA’s dual role as an osteoproliferative and 
antioxidant agent, presenting a cost-effective approach 
to mitigating post-extraction alveolar resorption—a 
persistent issue in clinical dentistry. Furthermore, this 
study advances regenerative protocols by bridging the 
divide between scaffold-based and bioactive therapies, 
thereby paving the way for enhanced implant outcomes 
and patient care.
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