The effect of locally applied ferulic acid on osteoblast proliferation and trabecular bone thickness in a rabbit model
PDF

Keywords

Ferulic acid
Alveolar Ridge Augmentation
Allografts
Ki-67 Antigen
Bone Regeneration

Abstract

Background: The preservation of the alveolar ridge after tooth extraction is essential for maintaining bone volume, which is vital for subsequent implant placement. Ferulic acid (FA), a polyphenol distinguished by its antioxidant and osteogenic properties, has the potential to augment bone regeneration. Nevertheless, its specific role in alveolar bone healing warrants further investigation. Purpose: This study assesses the effects of locally administered FA in conjunction with demineralized freeze-dried bone allograft (DFDBA) on osteoblast proliferation (Ki-67 expression) and trabecular bone thickness within a rabbit model. Materials and Methods: This in vivo experimental animal study was conducted using twenty male New Zealand white rabbits (1.5–2 kg), which were allocated into four groups (n=5): Group A received 2% FA + 98% DFDBA, Group B received 4% FA + 96% DFDBA, Group C was treated with DFDBA alone (positive control), and Group D underwent natural healing (negative control). The alveolar sockets were treated accordingly and sutured following extraction of the upper central incisor. Histological analysis involved hematoxylin and eosin (H&E) staining and immunohistochemical assessment of Ki67 expression to evaluate osteoblast proliferation. Trabecular bone thickness was measured through digital histomorphometry. Statistical analyses were performed using appropriate parametric or non-parametric tests. Results: Groups receiving FA (2% and 4%) demonstrated significantly higher Ki67 expression and trabecular bone thickness compared to the DFDBA-only and natural healing groups (p < 0.05). The 4% FA group exhibited the most pronounced osteogenic response. Conclusion: Local application of FA, particularly at 4%, enhances osteoblast proliferation and trabecular bone thickness in alveolar ridge preservation. This suggests its potential as an adjunct in post-extraction bone regeneration strategies.
https://doi.org/10.11138/oi.v17i3.148
PDF

References

Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. https://doi.org/10.1016/j.btre.2014.09.002

Rechner, A. R.; Kuhnle, G.; Hu, H.; Roedig-Penman, A.; van den Braak, M. H.; Moore, K. P.; et al. The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic. Res. 2002, 36(11), 1229–1241. DOI not available

Mancuso, C.; Santangelo, R. Ferulic acid: pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. https://doi.org/10.1016/j.fct.2013.12.024

Zhao, Z.; Moghadasian, M. H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109(4), 691–702. https://doi.org/10.1016/j.foodchem.2008.01.057

Li, D.; Rui, Y. X.; Guo, S. D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. https://doi.org/10.1016/j.lfs.2021.119921

Vimalraj, S.; Saravanan, S.; Hariprabu, G.; Yuvashree, R.; Kanna, S. K. A.; Sujoy, K.; et al. Kaempferol-zinc(II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci. 2020, 256, 117993. https://doi.org/10.1016/j.lfs.2020.117993

Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; et al. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 122, 631–638. https://doi.org/10.1016/j.saa.2013.11.110

Jaiswal, Y.; Kumar, S.; Mishra, V.; Bansal, P.; Anand, K. R.; Singh, S. Efficacy of decalcified freeze-dried bone allograft in the regeneration of small osseous defect: A comparative study. Natl. J. Maxillofac. Surg. 2017, 8(2), 143–148. https://doi.org/10.4103/njms.NJMS_45_17

Naidu, P. Allografts in Periodontal Regeneration. Madr. J. Case Rep. Stud. 2019, 3, 121–125. DOI not available

Zhang, H.; Yang, L.; Yang, X. G.; Wang, F.; Feng, J. T.; Hua, K. C.; et al. Demineralized bone matrix carriers and their clinical applications: an overview. Orthop. Surg. 2019, 11(5), 725–737. https://doi.org/10.1111/os.12529

Johnson, T. M.; Berridge, J. P.; Baron, D. Protocol for maintaining alveolar ridge volume in molar immediate implant sites. Clin. Adv. Periodontics 2017, 7(4), 207–214. https://doi.org/10.1902/cap.2017.160062

Shigeyama, Y.; D’Errico, J. A.; Stone, R.; Somerman, M. Commercially-prepared allograft material has biological activity in vitro. J. Periodontol. 1995, 66(6), 478–487. https://doi.org/10.1902/jop.1995.66.6.478

Vaid, T.; Kumar, S.; Mehta, R.; Shah, S.; Joshi, S.; Bhakkand, S.; et al. Clinical and radiographic evaluation of demineralized freeze-dried bone allograft with concentrated growth factor versus concentrated growth factor alone in the treatment of intrabony defects. Med. Pharm. Rep. 2021, 94(2), 220. https://doi.org/10.15386/mpr-1794

Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region. J. Clin. Periodontol. 2019, 46(Suppl. 21), 82–91. https://doi.org/10.1111/jcpe.13049

Raggatt, L. J.; Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 2010, 285(33), 25103–25108. https://doi.org/10.1074/jbc.R109.041087

Hart, N. H.; Newton, R. U.; Tan, J.; Rantalainen, T.; Chivers, P.; Siafarikas, A.; et al. Biological basis of bone strength: anatomy, physiology and measurement. J. Musculoskelet. Neuronal Interact. 2020, 20(3), 347–371. DOI not available

Nordin, M. Basic Biomechanics of the Musculoskeletal System; 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, 2001; pp 267–275.

Crockett, J. C.; Rogers, M. J.; Coxon, F. P.; Hocking, L. J.; Helfrich, M. H. Bone remodelling at a glance. J. Cell Sci. 2011, 124(Pt 7), 991–998. https://doi.org/10.1242/jcs.063032

Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010, 11, 219–227. https://doi.org/10.1007/s11154-010-9153-1

Zhu, L.; Tang, Y.; Li, X. Y.; Keller, E. T.; Yang, J.; Cho, J. S.; et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci. Transl. Med. 2020, 12(529), eaaw6143. https://doi.org/10.1126/scitranslmed.aaw6143

Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Müller, G. A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28(12), 3357–3370. https://doi.org/10.1038/s41418-021-00823-x

Scholzen, T.; Gerdes, J. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 2000, 182(3), 311–322. https://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9

Booth, D. G.; Takagi, M.; Sanchez-Pulido, L.; Petfalski, E.; Vargiu, G.; Samejima, K.; et al. Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife 2014, 3, e01641. https://doi.org/10.7554/eLife.01641

Li, Y. X.; Zhang, L.; Simayi, D.; Zhang, N.; Tao, L.; Yang, L.; et al. Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer. PLoS One 2015, 10(2), e0118391. https://doi.org/10.1371/journal.pone.0118391

Marian, D.; Toro, G.; D’Amico, G.; Trotta, M. C.; D’Amico, M.; Petre, A.; et al. Challenges and innovations in alveolar bone regeneration: A narrative review. Medicina 2024, 61(1), 20. https://doi.org/10.3390/medicina61010020

Martins, J. R.; Wagner, T. P.; Vallim, A. C.; Konflanz, W.; Schwendicke, F.; Celeste, R. K.; et al. Comparison of the efficacy of different techniques to seal the alveolus. J. Clin. Periodontol. 2022, 49(7), 694–705. https://doi.org/10.1111/jcpe.13643

Parashis, A.; Andronikaki-Faldami, A.; Tsiklakis, K. Clinical and radiographic comparison of three regenerative procedures. Int. J. Periodontics Restorative Dent. 2004, 24(1), 81–90. DOI not available

Keshavarzi, F.; Ahrari, F.; Seyedmajidi, M.; Ziaei, M.; Bijani, A.; Jenabian, N. CenoBone® with and without PRGF in ridge preservation. Dent. Res. J. (Isfahan) 2023, 20, 26. https://doi.org/10.4103/1735-3327.372649

Doss, H. M.; Samarpita, S.; Ganesan, R.; Rasool, M. Ferulic acid suppresses osteoclast differentiation via NF-κB inhibition. Life Sci. 2018, 207, 284–295. https://doi.org/10.1016/j.lfs.2018.06.013

Wagle, S.; Sim, H. J.; Bhattarai, G.; Choi, K. C.; Kook, S. H.; Lee, J. C.; et al. Ferulic acid protects against irradiation-induced bone damage. Antioxidants (Basel) 2021, 10(8), 1166. https://doi.org/10.3390/antiox10081166

Sassa, S.; Kikuchi, T.; Shinoda, H.; Suzuki, S.; Kudo, H.; Sakamoto, S. Preventive effect of ferulic acid on bone loss. In Vivo 2003, 17(3), 277–280. DOI not available

Jayamani, J.; Naisini, A.; Madhan, B.; Shanmugam, G. Ferulic acid as a collagen fibril formation inhibitor. Int. J. Biol. Macromol. 2018, 113, 277–284. https://doi.org/10.1016/j.ijbiomac.2018.02.134

Trombelli, L.; Farina, R.; Marzola, A.; Bozzi, L.; Liljenberg, B.; Lindhe, J. Remodeling of human extraction sockets. J. Clin. Periodontol. 2008, 35(7), 630–639. https://doi.org/10.1111/j.1600-051X.2008.01246.x

Liu, Z.; Chang, H.; Hou, Y.; Wang, Y.; Zhou, Z.; Wang, M.; et al. miR-26a overexpression in BMSCs facilitates bone regeneration. Mol. Med. Rep. 2018, 18(6), 5317–5326. https://doi.org/10.3892/mmr.2018.9582

Zhou, W.; Chen, B.; Shang, J.; Li, R. Ferulic acid attenuates osteoporosis via GSK-3β/Lrp-5/ERK pathways. Physiol. Int. 2021, 108(3), 317–341. https://doi.org/10.1556/2060.2021.00174

Ghaisas, M. M.; Kshirsagar, S. B.; Sahane, R. S. Wound healing activity of ferulic acid in diabetic rats. Int. Wound J. 2014, 11(5), 523–532. https://doi.org/10.1111/iwj.12009

Salim, A. S.; Al Hijazi, A. Effect of calcium phosphate ceramic on tooth socket healing. J. Baghdad Coll. Dent. 2010, 22, 57–61. DOI not available

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Mohanad Imad Nsaif, Saif Saad Ali Al-Jewari , Abdulsattar salim Mahmood